中国盛光

亚波长双曲超材料板表面反射光 Goos-Hänchen 位移

孙璐璐,马季*

辽宁石油化工大学理学院,辽宁 抚顺 113001

摘要 研究了亚波长双曲超材料板表面反射光 Goos-Hänchen (G-H)位移增大、方向转换以及临界波长调制方法。 基于等效介质理论和稳态相位方法系统计算了入射波长、填充因子以及背景介电常数等对 G-H 位移特性的影响。 研究表明亚波长双曲超材料板不仅可以明显增大反射光的 G-H 位移,而且可通过改变入射波长实现 G-H 位移方 向的转换。在正负 G-H 位移之间存在临界波长,入射波长小于此临界波长时 G-H 位移为正,反之为负;入射波长 越接近该临界波长,G-H 位移越大,反之越小。研究还发现临界波长可以由双曲超材料板的填充因子和背景介电 常数调制,增大填充因子和背景介电常数可以使临界波长发生蓝移,反之发生红移。以上研究表明基于亚波长双 曲超材料板表面的 G-H 位移在光隔离器、光学传感器以及集成光电器件应用中具有广阔的应用前景。

关键词 表面光学; 亚波长结构; 双曲超材料; Goos-Hänchen 位移

中图分类号 O431.1 文献标志码 A

doi: 10.3788/CJL202148.2313001

1 引 言

1947年,德国科学家 Goos 和 Hänchen^[1]在实验 室发现当有限尺寸的入射光束在两介质交界面上发 生全内反射时,实际反射点相对于入射点会沿入射面 发生一段横向偏移,这一偏移即所谓的 Goos-Hänchen(G-H)位移。此后,人们对G-H 位移的物理 本质和实际应用展开了大量研究^[2-4]。有限宽度的入 射光束可以等效成一系列不同方向的平面波,这些平 面波在两介质交界面上发生不同的反射,观察到的结 果是所有反射光的叠加效果^[5]。所有反射光强度和 相位上的差异会使入射光束在横向上发生一定偏移, 即产生 G-H 位移。G-H 位移在光隔离、光学传感以 及集成光学等领域表现出很大的潜在应用价值[5-6]。 在一般材料的交界面,GH位移很小,一般仅为波长 的几倍,这不利于观察测量和实际应用。研究人员提 出了包括稳态相位、能量传输以及平面波光线膨胀等 模型来计算反射光的 G-H 位移。实验室中通常采用 位置敏感探测器、弱测量方法以及干涉测量法观测 G-H 位移^[7]。近年来,人们在对超材料表面 G-H 位 移的研究中发现了很多新奇的结果。例如,Kang 等^[8]发现运用石墨烯基超材料可实现 G-H 位移的有效放大和调节。Wong 等^[9]在光子晶体系统中实现了 正负 G-H 位移的增大。Asiri 等^[10]则指出可用外加 泵浦驱动场来控制 G-H 位移。但这些研究大多集中 在红外波段,G-H 位移约为入射波长的几十倍,无法 用于可见光波段的器件设计。

双曲超材料(HMM)是一类高度各向异性的单轴 材料,因其色散曲面呈现双曲面形状而得名^[11]。非 磁性介质 HMM 的介电系数为二阶张量形式。当介 电系数垂直分量为正、平行分量为负时,其色散曲面 为双叶型双曲面,称为I型 HMM。当介电系数的垂 直分量为负、平行分量为正时,其色散曲面为单叶型 双曲面,称为II型 HMM^[12]。HMM 在光场局域、增强 自发辐射、亚波长成像等领域都有重要应用^[13-19]。自 然界中存在的 HMM 非常少,而且天然材料呈现双曲 色散特性的频率多在远红外和太赫兹波段,无法用于 可见光波段的器件设计。而由人工设计的亚波长电 磁周期性结构则可以实现光波段的 HMM,但要满足 材料的光轴方向和垂直光轴方向的介电函数符号相 反^[20-23]。目前,比较典型的人工 HMM 设计方法主要 包括亚波长厚度的金属和电介质堆叠的多层结构和

收稿日期: 2021-01-20; 修回日期: 2021-03-24; 录用日期: 2021-05-06

基金项目: 辽宁省教育厅科学研究经费项目(L2020049)、辽宁石油化工大学引进人才科研启动基金(2019XJJL-020) 通信作者: *maji531@163.com

嵌入电介质内部的金属纳米线阵列。多层 HMM 的 设计取决于目标光谱范围、损耗和阻抗匹配。为了实 现阻抗匹配,电介质和金属的介电常数不能相差超过 一个数量级。金属银(Ag)在紫外区和可见光区域的 损耗有限,此外,它还可以与弱吸收介质(二氧化钛或 氧化铝)的介电常数相匹配,因此本文所选取的多层 结构由金属银和二氧化钛构成^[24-26]。

本文根据等效介质理论和稳态相位方法,对由金属银和二氧化钛构成的亚波长 HMM 板表面反射光 束的 G-H 位移特性进行了系统的研究。详细分析了 亚波长 HMM 板表面反射光束的 G-H 位移的大小和 方向特性,分别研究了入射波长、填充因子以及背景 介电系数对系统 G-H 位移的影响。研究结果表明亚 波长 HMM 板表面反射光束的 G-H 位移约为传统材 料 G-H 位移的 100 倍,此外,还可通过改变入射波长 实现 G-H 位移方向的转换。正负 G-H 位移之间存 在临界波长,入射波长小于临界波长时 G-H 位移为 正,反之为负。入射波长越接近该临界波长,G-H 位 移越大,反之越小。研究还发现增加填充因子和背景 介电常数可以使临界波长发生蓝移,反之发生红移。

2 亚波长 HMM 板等效介质理论及其 表面 G-H 位移

本文采用金属银和二氧化钛(TiO₂)薄膜交替 排列构成亚波长 HMM 结构,如图 1 所示。HMM 是具有强各向异性介电常数张量或磁导率张量的介 质,该张量的一个主分量和其余两个主分量符号相 反,具体形式为

$$\hat{\boldsymbol{\varepsilon}} = \begin{bmatrix} \boldsymbol{\varepsilon}_{xx} & 0 & 0\\ 0 & \boldsymbol{\varepsilon}_{yy} & 0\\ 0 & 0 & \boldsymbol{\varepsilon}_{zz} \end{bmatrix}, \quad \hat{\boldsymbol{\mu}} = \begin{bmatrix} \boldsymbol{\mu}_{xx} & 0 & 0\\ 0 & \boldsymbol{\mu}_{yy} & 0\\ 0 & 0 & \boldsymbol{\mu}_{zz} \end{bmatrix}, \quad (1)$$

式中: $\hat{\epsilon}$ 和 $\hat{\mu}$ 分别为介电常数张量和磁导率张量; ϵ_{xx} 、 ϵ_{yy} 、 ϵ_{zz} 分别为x、y、z 方向的介电常数主分量; μ_{xx} 、 μ_{yy} 、 μ_{zz} 分别为x、y、z 方向的磁导率主分量。 面内分量 $\epsilon_{xx} = \epsilon_{yy} = \epsilon_{\perp}$,面外分量 $\epsilon_{zz} = \epsilon_{\parallel}$,下标 \perp 和 || 分别表示与光轴垂直和平行,本文仅考虑电 HMM,因此,磁导率张量为单位张量。根据等效介 质理论^[27],垂直和平行于各向异性轴的有效介电系 数分量可表示为

$$\boldsymbol{\varepsilon}_{\parallel} = \frac{\boldsymbol{\varepsilon}_{\mathrm{Ag}} \boldsymbol{\varepsilon}_{\mathrm{TiO}_{2}}}{f \boldsymbol{\varepsilon}_{\mathrm{TiO}_{2}} + (1 - f) \boldsymbol{\varepsilon}_{\mathrm{Ag}}}, \qquad (2)$$

$$\boldsymbol{\varepsilon}_{\perp} = f \boldsymbol{\varepsilon}_{\mathrm{Ag}} + (1 - f) \boldsymbol{\varepsilon}_{\mathrm{TiO}_{2}}, \qquad (3)$$

式中:*f* 是金属银的填充因子;ε_{Ag} 和 ε_{TiO₂} 分别表示 金属银和二氧化钛的介电系数。ε_{Ag} 可由 Drude 模 型给出^[28]:

$$\boldsymbol{\varepsilon}_{\mathrm{Ag}} = \boldsymbol{\varepsilon}_{\infty} - \frac{\boldsymbol{\omega}_{\mathrm{p}}^{2}}{\boldsymbol{\omega}(\boldsymbol{\omega} + \mathrm{i}\boldsymbol{\tau}^{-1})}, \qquad (4)$$

式中: ω_{p} 为等离子体频率, $\omega_{p} = 1.4 \times 10^{16}$ rad/s; $\varepsilon_{\infty} = 3.7; \tau$ 为弛豫时间, $\tau = 0.45 \times 10^{-14}$ s。二氧化 钛的介电系数可表示为^[29]

$$\epsilon_{\text{TiO}_2} = 5.913 + \frac{0.2441}{\lambda^2 - 0.0803}$$
 (5)

本文以横磁(TM)波为例,根据 Fresnel 公式得 到其反射系数为

$$r_{\rm TM} = \frac{r_{\rm I} + r_{\rm II} \,{\rm e}^{2ik_{\rm m,z}d}}{1 + r_{\rm II} \,{\rm e}^{2ik_{\rm m,z}d}},\tag{6}$$

式中: $k_{m,z}$ 为材料板波矢量的垂直分量; d 为 HMM板的厚度; r_{I} 和 r_{I} 分别为光波在界面 I和 界面 II的反射系数,可分别表示为

$$r_{\rm I} = \frac{k_{\rm i,z}/\varepsilon_{\rm i} - k_{\rm m,z}/\varepsilon_{\perp}}{k_{\rm i,z}/\varepsilon_{\rm i} + k_{\rm m,z}/\varepsilon_{\perp}}, \qquad (7)$$

$$r_{\rm II} = \frac{k_{\rm m,z}/\varepsilon_{\perp} - k_{\rm t,z}/\varepsilon_{\rm t}}{k_{\rm m,z}/\varepsilon_{\perp} + k_{\rm t,z}/\varepsilon_{\rm t}},$$
(8)

式中: ϵ_i 、 ϵ_t 分别为入射区和透射区的介电系数; $k_{i,z}$ 、 $k_{t,z}$ 分别为入射区和透射区波矢量的垂直分量。首先将该结构置于空气中,此时 $\epsilon_i = \epsilon_t = 1$, $k_{i,z} = k_{t,z} = k_0 \cos \theta$, k_0 是光在真空中的波数, θ 为入射角。将 HMM 介电常数张量 $\hat{\epsilon}$ 代入麦克斯韦 方程,根据电场、磁场以及波矢量的关系,可得 HMM 中波矢的垂直分量 $k_{m,z}$ 为^[20]

$$k_{\mathrm{m,z}} = \sqrt{\varepsilon_{\perp} \left(k_{0}^{2} - \frac{\beta^{2}}{\varepsilon_{\parallel}}\right)}, \qquad (9)$$

式中: $\beta = k_0 \sin \theta$ 为传播常数,即入射波矢量的平行 分量。将(7)~(9)式代入(6)式可以求得 HMM 板 的反射系数。根据稳态相位法^[30],材料板表面的 G-H 位移(图 1)可表示为

$$D = -\frac{\lambda}{2\pi} \frac{\partial \varphi}{\partial \theta}, \qquad (10)$$

式中: φ = - iln r_{TM} 表示反射相位,可由反射系数给出, r_{TM} 为 TM 波的反射系数。

3 亚波长 HMM 板表面 G-H 位移 特性分析

本节由稳态相位法计算亚波长 HMM 板表面的 G-H 位移,并对其变化机制和影响因素加以讨论 分析。HMM 板的厚度 d = 120 nm, f = 0.35。首 先,根据 (2)~(5) 式,计算了材料板等效介电系数 实部和虚部随入射波长的变化,如图 2 所示。从 图 2(a)可以看出:对于区域 I, ϵ_{\perp} >0 且 ϵ_{\parallel} <0,

即当入射波长在 300~395 nm 之间时,该结构表 现为 I型 HMM;对于区域 II, ϵ_{\perp} >0 且 ϵ_{\parallel} >0,即 当入射波长在 395~551 nm 之间时,该结构表现 为椭圆形 HMM;对于区域 II, ϵ_{\perp} <0 且 ϵ_{\parallel} >0,即 当入射波长在 551~800 nm 之间时,该结构表现 为 II型 HMM。随着入射波长的增大,该多层材料 的色散曲面由双叶型双曲面转变为椭圆面再转变 为单叶型双曲面,这种转变是由金属银和二氧化 钛的色散耦合导致的。图 2(b)表明:对于 I型 HMM,介电系数的平行分量的损耗非常大,且随 波长呈近线性增加,垂直分量的损耗则很小;对于 II型 HMM,介电系数的平行和垂直分量的损耗都 较小。

图 2 f = 0.35 时材料板等效介电系数实部和虚部随入射波长的变化. (a)Re(ε_{\parallel})和 Re(ε_{\perp}); (b)Im(ε_{\parallel})和 Im(ε_{\perp}) Fig. 2 Variations of real part and imaginary part of material's effective permittivity with incident wavelength for f = 0.35. (a) Re(ε_{\parallel}) and Re(ε_{\parallel}); (b) Im(ε_{\parallel}) and Im(ε_{\perp})

结合图 2 和(6)~(10)式,首先计算了不同类型 亚波长 HMM 板表面的 G-H 位移随入射角度的变 化,计算结果如图 3 所示。需要指出当 f = 0 时, HMM 板变为传统的 TiO₂ 材料板 [图 3(a)], 当入 射波长不同时 HMM 板的类型也不同 [图 3(b)~ (d)]。图 3(a)为入射波长 λ=360 nm 的 TiO₂ 材料 板表面 G-H 位移随入射角度的变化。图 3(b)为入 射波长 $\lambda = 360$ nm 的 I 型 HMM 板表面 G-H 位移 随入射角度的变化。图 3(c)为入射波长 $\lambda =$ 430 nm 的椭圆形 HMM 板表面 G-H 位移随入射角 度的变化。图 3(d)为入射波长 $\lambda = 630$ nm 的 II 型 HMM 板表面 G-H 位移随入射角度的变化。图 3 表明,在同样的入射参数条件下「图 3(a)和 3(b)], HMM 板表面 G-H 位移是传统材料的 100 倍,这归 因于 HMM 独特的色散特性。同样的结构参数条 件下 [图 3(b)~(d)],] 型 HMM 板表面的 G-H 位 移比Ⅱ型和椭圆型 HMM 板表面的 G-H 位移的增 大更明显。因此,后面的计算只关注 I 型 HMM 板 表面 G-H 位移特性。

计算了入射波长分别为 325 nm 和 350 nm 时 G-H 位 移 随 入 射 角 度 的 变 化 值, 计 算 结 果 如 图 4(a)所示,图中点线和实线分别对应入射波长 为 325 nm 和 350 nm。当波长为 325 nm 的入射光 以 69.9°入射时,对应的 G-H 位移为+52.8 μm。 当波长为 350 nm 的入射光以 66.4°入射时,对应 的 G-H 位移为-39.1 µm。图 4(a)中计算结果表 明:对于 HMM 板,仅改变入射波长即可获得方向 相反的 G-H 位移,这是其他单一材料系统所不能 实现的^[31-32]。当 TM 波反射系数达到最小时反射 相位发生突变,而反射系数相位的突变是引起 G-H 位移的原因。图 4(b)给出了 HMM 板表面反 射相位随入射角度的变化值,图中点线和实线分 别对应入射波长为 325 nm 和 350 nm。可以看到 图 4(b)的相位突变点和图 4(a)中的 G-H 位移峰 是对应的,且当相位突然变小时 G-H 位移为正,反 之为负。

图 3 不同类型 HMM 板 G-H 位移随入射角度的变化。(a)λ=360 nm,TiO₂ 材料板;(b)λ=360 nm,I型 HMM 板; (c)λ=430 nm,椭圆形材料板;(d)λ=630 nm,II型 HMM 板

Fig. 3 Variation in G-H shift of different types of HMM slab with incident angle. (a) λ = 360 nm, TiO₂ material slab;
(b) λ = 360 nm, HMM slab of type I; (c) λ = 430 nm, material slab of elliptical shape; (d) λ = 630 nm, HMM slab of type II

图 5 为 HMM 板表面最大 G-H 位移与入射波 长的对应关系,计算结果表明入射波长从 310 nm 变化到 360 nm 的过程中,HMM 板表面最大 G-H 位移先增大后减小,在此过程中 G-H 位移的偏移方 向发生转换。此外,正负 G-H 位移间存在一个临界 波长(约为 335.5 nm),当入射波长小于临界波长时 G-H 位移为正,反之为负。入射波长越接近临界波 长,G-H 位移越大,且表现出一定的对称性。这与 Yin 等发现的最佳金属层厚度现象类似,该结果是 由共振模中的内在损耗与辐射损耗关系所决定的,当 共振模中的内在损耗大于辐射损耗时,G-H 位移为 负,反之为正,且二者之差越小,G-H 位移越大^[33-34]。

为了进一步揭示 HMM 板表面 G-H 位移特 性,计算了金属银填充因子 f 和背景介质介电常数 ϵ 对 G-H 位移大小和位置的影响,计算结果如图 6 所示。图 6(a)和(b)给出了入射波长分别为 325 nm 和 350 nm 时 HMM 板金属银的填充因子 f对 G-H 位移的影响,显然填充因子 f 是通过影响 HMM 介电常数系数间接影响 G-H 位移的。从图 6(a)的计算结果可以看出,对于波长为 325 nm 的 入射波(小于临界波长),随着 f 的增加,正向的 G-H 位移不断增加,但当填充因子 f = 0.55,G-H 位 移的偏移方向发生改变,且随着 f 的增加,负向的 G-H 位移不断减小。对于波长为 350 nm(大于临 界波长)的入射波「图 6(b)],随着 f 的增加,负向 的 G-H 位移则不断减小。同样地,在图 6(c)和

80

=2.52.2

1.9

=1.6

80

(d)中可以看出入射波长分别为 325 nm 和 350 nm 时 HMM 板背景介质介电常数 ε 对 G-H 位移的影 响。对于波长为 325 nm 的入射波 [图 6(c)], 随着 ε的增加,正向的 G-H 位移不断增加,但当介电常 数 $\varepsilon = 2.2.6$ -H 位移的偏移方向发生改变,且随着 ε的增加,负向的 G-H 位移不断减小。对于波长 为 350 nm 的入射波 [图 6(d)], 随着 ε 的增加, 负 向的 G-H 位移不断减小。结合图 4 可得增加填充 因子和背景介质介电常数实际上等效于临界波长 蓝移。因此,当入射波长小于临界波长时 G-H 位 移方向发生改变,而当入射波长大于临界波长时 则 G-H 位移方向不变。对临界波长的调节将为光 隔离器、光传感器等新型光学器件的设计提供 帮助。

图 6 金属银填充因子 f 和背景介质介电常数 ϵ 对 HMM 板 G-H 位移的影响。(a)(c) λ = 325 nm; (b)(d) λ = 350 nm Fig. 6 Effects of filling factor and background permittivity ϵ on G-H shift of HMM slab. (a)(c) $\lambda = 325$ nm; (b)(d) $\lambda = 350 \text{ nm}$

结 论 4

基于等效介质理论和稳态相位方法,研究了亚 波长 HMM 板表面反射光 G-H 位移的大小和方向 特性。研究结果表明:与传统材料相比,HMM 板表 面 G-H 位移得到显著增大,并且仅通过改变入射波 长即可实现 G-H 位移方向的转换。正负 G-H 位移 之间存在临界波长,当入射波长小于此临界波长时, G-H 位移为正,反之为负。入射波长越接近临界波 长,G-H 位移越大,正负 G-H 位移关于临界波长表 现出一定的对称性。此外还发现利用 HMM 的填

充因子和背景介质的介电常数可以调节临界波长位 置,随着填充因子和背景介质的介电常数的增加,临 界波长发生蓝移。以上结论对基于 G-H 位移效应 的光隔离器、光学传感器、集成光电器件等的设计有 一定的参考价值。

考 文 献

- [1] Goos F, Hänchen H. Ein neuer und fundamentaler versuch zur totalreflexion [J]. Annalen Der Physik, 1947, 436(7/8): 333-346.
- Wan Y H, Zheng Z, Kong W J, et al. Fiber-to-fiber $\lceil 2 \rceil$ optical switching based on gigantic Bloch-surface-

wave-induced Goos-Hänchen shifts [J]. IEEE Photonics Journal, 2013, 5(1): 7200107.

- [3] Lu Z R, Liang B M, Ding J W, et al. Goos-Hänchen shift based on nearzero-refractive-index materials[J]. Acta Physica Sinica, 2016, 65(15): 154208.
 陆志仁,梁斌明,丁俊伟,等.近零折射率材料的古 斯汉欣位移的特性研究[J].物理学报, 2016, 65 (15): 154208.
- [4] Bliokh K Y, Aiello A. Goos-Hänchen and Imbert-Fedorov beam shifts: an overview [J]. Journal of Optics, 2013, 15(1): 014001.
- [5] Wang X P, Yin C, Sun J J, et al. High-sensitivity temperature sensor using the ultrahigh order modeenhanced Goos-Hänchen effect [J]. Optics Express, 2013, 21(11): 13380-13385.
- [6] Zang M D, He T, Zhang B, et al. Temperaturedependent Goos-Hänchen shift in the terahertz range [J]. Optics Communications, 2016, 370: 81-84.
- [7] Yan T K, Liang B M, Jiang Q, et al. A research review of the Goos-Hänchen shift [J]. Optical Instruments, 2014, 36(1): 90-94.
 鄢滕奎,梁斌明,蒋强,等. 古斯-汉欣位移研究综述 [J]. 光学仪器, 2014, 36(1): 90-94.
- [8] Kang Y Q, Xiang Y J, Luo C Y. Tunable enhanced Goos-Hänchen shift of light beam reflected from graphene-based hyperbolic metamaterials[J]. Applied Physics B, 2018, 124(6): 1-6.
- [9] Wong Y P, Miao Y, Skarda J, et al. Large negative and positive optical Goos-Hänchen shift in photonic crystals[J]. Optics Letters, 2018, 43 (12): 2803-2806.
- [10] Asiri S, Xu J P, Al-Amri M, et al. Controlling the Goos-Hänchen and Imbert-Fedorov shifts via pump and driving fields [J]. Physical Review A, 2016, 93 (1): 013821.
- Xiang Y J, Guo J, Dai X Y, et al. Engineered surface Bloch waves in graphene-based hyperbolic metamaterials
 [J]. Optics Express, 2014, 22(3): 3054-3062.
- [12] Wang Y F, Zhou X D, Chen P, et al. The Goos-Hänchen shift from the prisms structure coated with silver nanofilm[J]. Journal of Optoelectronics laser, 2019, 30(6): 659-664.
 王云飞,周晓迪,陈平,等.含有银纳米膜的棱镜中光束古斯-汉欣位移效应研究[J].光电子 ·激光, 2019, 30(6): 659-664.
- [13] Das A, Pradhan M. Quantum weak measurement of Goos-Hänchen effect of light in total internal reflection using a Gaussian-mode laser beam [J]. Laser Physics Letters, 2020, 17(6): 066001.
- [14] Lu F Y, Yan X B, Lin W, et al. Control of Goos-Hänchen shift based on graphene/hexagonal boron

nitride heterostructure [J]. Laser & Optoelectronics Progress, 2020, 57(13): 131601.

卢方圆, 闫兴彬, 林威, 等. 石墨烯-六方氮化硼异质 结构的古斯-汉欣位移调控[J]. 激光与光电子学进 展, 2020, 57(13): 131601.

- [15] Yao J, Yang X D, Yin X B, et al. Three-dimensional nanometer-scale optical cavities of indefinite medium
 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(28): 11327-11331.
- [16] Jacob Z, Smolyaninov I I, Narimanov E E. Broadband purcell effect: radiative decay engineering with metamaterials [J]. Applied Physics Letters, 2012, 100(18): 181105.
- [17] Li R F, Shi K B. High spatiotemporal imaging based on optical field engineering [J]. Acta Optica Sinica, 2019, 39(1): 0126010.
 李润丰,施可彬.基于光场调控的高时空分辨率光学 成像[J].光学学报, 2019, 39(1): 0126010.
- [18] Lu Y, Bu X H, Li D X, et al. Research progress of infrared stealth materials based on photonic crystals
 [J]. Laser & Optoelectronics Progress, 2019, 56
 (8): 080003.
 卢仪,卜小海,李栋先,等.基于光子晶体的红外隐 身材料研究进展[J].激光与光电子学进展, 2019, 56(8): 080003.
- [19] Huo H, Yan F P, Wang W, et al. Terahertz high-sensitivity sensor design based on metamaterial [J]. Chinese Journal of Lasers, 2020, 47(8): 0814004.
 霍红,延凤平,王伟,等.基于超材料的太赫兹高灵 敏度传感器的设计[J]. 中国激光, 2020, 47(8): 0814004.
- [20] Chen C W, Bian T T, Chiang H P, et al. Nonlocal optical effects on the Goos-Hänchen shifts at multilayered hyperbolic metamaterials[J]. Journal of Optics, 2016, 18(2): 025104.
- [21] Xu C R, Xu J P, Song G, et al. Enhanced displacements in reflected beams at hyperbolic metamaterials[J]. Optics Express, 2016, 24(19): 21767-21776.
- [22] Zhen W M, Deng D M. Goos-Hänchen and Imbert-Fedorov shifts in temporally dispersive attenuative materials[J]. Journal of Physics D: Applied Physics, 2020, 53(25): 255104.
- [23] Han L, Pan J X, Wu C, et al. Giant Goos-Hänchen shifts in Au-ITO-TMDCs-graphene heterostructure and its potential for high performance sensor [J]. Sensors, 2020, 20(4): 1028.
- [24] Li Z W, Lu H, Li Y W, et al. Near-infrared light absorption enhancement in graphene induced by the Tamm state in optical thin films [J]. Acta Optica

第48卷第23期/2021年12月/中国激光

Sinica, 2019, 39(1): 0131001. 黎志文, 陆华, 李扬武, 等.光学薄膜塔姆态诱导石 墨烯近红外光吸收增强[J].光学学报, 2019, 39 (1): 0131001.

- [25] Yue F Y, Mao F, Wang H, et al. Infrared defect emission and thermal effect in high power diode lasers
 [J]. Laser & Optoelectronics Progress, 2019, 56 (11): 110001.
 越方禹,毛峰,王涵,等.高功率半导体激光器红外 缺陷发射与热效应[J].激光与光电子学进展, 2019, 56(11): 110001.
- [26] Wu H Y, Yang Y, Zhang G L, et al. Research progress in hyperbolic metamaterials and sensors [J]. Journal of Materials Engineering, 2020, 48(6): 34-42.
 吴红亚,杨云,张光磊,等.双曲超材料及其传感器 研究进展[J].材料工程, 2020, 48(6): 34-42.
- Biehs S A, Menon V M, Agarwal G S. Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial [J]. Physical Review B, 2016, 93(24): 245439.
- [28] Lang S, Lee H S, Petrov A Y, et al. Gold-silicon metamaterial with hyperbolic transition in near infrared[J]. Applied Physics Letters, 2013, 103(2): 021905.

- [29] DeVore J R. Refractive indices of rutile and sphalerite
 [J]. Journal of the Optical Society of America, 1951, 41(6): 416-419.
- [30] Chen Y Y, Zhang W Z, Yan X N. Controlling of Goos-Hänchen shift in quantum coherence surface plasmon resonance system [J]. Acta Optica Sinica, 2017, 37(9): 0903001.
 陈园园,张玮芝,阎晓娜.量子相干表面等离子体谐 振系统中古斯-汉欣位移的控制[J].光学学报, 2017, 37(9): 0903001.
- [31] Qing D K, Chen G. Goos-Hänchen shifts at the interfaces between left- and right-handed media [J]. Optics Letters, 2004, 29(8): 872-874.
- [32] Wang L G, Chen H, Zhu S Y. Large negative Goos-Hänchen shift from a weakly absorbing dielectric slab
 [J]. Optics Letters, 2005, 30(21): 2936-2938.
- [33] Yin X B, Hesselink L, Liu Z W, et al. Large positive and negative lateral optical beam displacements due to surface plasmon resonance [J]. Applied Physics Letters, 2004, 85(3): 372-374.
- [34] Liu X B, Cao Z Q, Zhu P F, et al. Large positive and negative lateral optical beam shift in prism-waveguide coupling system [J]. Physical Review E, 2006, 73 (5): 056617.

Goos-Hänchen Shift of Reflected Light at Surface of Subwavelength Hyperbolic Metamaterial Slab

Sun Lulu, Ma Ji

College of Sciences, Liaoning Petrochemical University, Fushun, Liaoning 113001, China

Abstract

Objective Goos and Hänchen discovered in 1947 that when an incident beam of finite size undergoes total internal reflection on the interface of two media, the actual reflection point shifts laterally along the incident plane relative to the incident point, and the shift is known as the Goos-Hänchen (G-H) shift. A finite-width incident beam can be compared to a series of plane waves travelling in different directions. These plane waves have different reflections at the interface of the two media. After the superposition of the differences in intensity and phase of all reflected light, the incident beam shifts to a certain extent in the transverse direction. G-H shift has great potential applications in optical isolation, optical sensing, and integrated optics. However, in general, the G-H shift at the material interface is very small, which is only a few times the wavelength. Therefore, it is not conducive to observation, measurement, and practical application. Hyperbolic metamaterials (HMMs) are a type of highly anisotropic uniaxial material named after their hyperbolic dispersion relations. HMMs have a wide range of applications, including light field localization, enhanced spontaneous emission, and subwavelength modulation of the G-H shift on the surface of the subwavelength HMM slab.

Methods Researchers proposed models including steady-state phase, energy transfer, and plane wave linear expansion functions to calculate the G-H shift of reflected light. In the laboratory, position-sensitive detectors, weak measurement, and interferometry are usually used to observe the properties of G-H shift. For nonmagnetic media,

the dielectric coefficient of HMM is in the form of a second-order tensor. When the vertical component of the dielectric coefficient is positive and the parallel component is negative, its dispersion surface is a hyperboloid of bilobate type, which is called I-type HMM. When the vertical component of a dielectric coefficient is negative and the parallel component is positive, the dispersion surface is a hyperboloid of univalent type, which is called II-type HMM. Currently, the most common artificial HMMs include a multilayer structure of metal and dielectric stacked with subwavelength thickness and a metal nanowire array embedded in a dielectric. The multilayer HMM design is determined by the target spectral range, loss, and impedance matching. We investigate the effects of incident wavelength, filling factor, and background permittivities on the properties of G-H shift using the effective medium theory and the stationary-phase method.

Results and Discussions First, we calculated the real and imaginary parts of the equivalent permittivity of the material slab with the incident wavelength (Fig. 2) and determine the types of HMM materials at different incident wavelengths. Then, the variation of the G-H shift of different types of the subwavelength HMM slab with incident angle is calculated (Fig. 3). Figs. 3(a)-(d) present the bulk material, I-type HMM, elliptical HMM, and II-type HMM, respectively. Fig. 3 shows that the G-H shift of the HMM slab is 100 times that of bulk material under the same incident parameters. In addition, under the same structural parameters, the G-H shift of I -type HMM is more significant than that of II -type and elliptical HMM slabs.

Second, we calculated the G-H shift with the increasing incident angle when the incident wavelengths are 325 and 350 nm, respectively [Fig. 4(a)], which shows that the G-H shift in the opposite direction can be obtained only by changing the incident wavelength. Fig. 4(b) shows the variation of the reflection phase of the surface of the HMM slab with the incident angle. The phase mutation point corresponds to the G-H shift peak, and when the phase suddenly decreases, the G-H shift is positive, and otherwise, it is negative. Moreover, the relationship between the maximum G-H shift and incident wavelength is calculated (Fig. 5). We discovered that a critical wavelength exists between the positive and negative G-H shifts. The G-H shift is positive when the incident wavelength is less than the critical wavelength, and otherwise, it is negative. The greater the G-H shift is, the closer the incident wavelength is to the critical wavelength, indicating symmetry.

Finally, we studied the effects of the silver filling factor and background dielectric constant on the G-H shift characteristics (Fig. 6). We found that increasing the filling factor and the dielectric constant of the background medium is equivalent to the blue shift of the critical wavelength. When the incident wavelength is less than the critical wavelength, the direction of the G-H shift will change. When the incident wavelength is greater than the critical wavelength, the direction of the G-H shift remain unchanged.

Conclusions In the present study, the intensity and direction characteristics of G-H shift of the subwavelength HMM slab have been revealed. It shows that except enhancing the value of the G-H shift, the HMM slab can achieve the direct transformation of the G-H shift under different incident wavelengths. A critical wavelength exists between the positive and negative G-H shifts. The G-H shift is positive (negative) when the incident wavelength is less (greater) than the critical wavelength. At the same time, the closer the incident wavelength is to the critical wavelength, the larger the G-H shift is. We also discovered that the filling factor and background permittivities can be used to tune the critical wavelength. The critical wavelength presents blue-shift as the filling factor or background permittivities increases (decreases) (red-shifts). We believe that the G-H shift at the surface of the subwavelength HMM slab is very promising for potential applications in novel all-optical isolators, optical sensing, and integrated optoelectronic devices considering these intriguing discoveries.

Key words optics at surfaces; subwavelength structure; hyperbolic metamaterials; Goos-Hänchen shift

OCIS codes 240.6645; 260.2065; 260.6970